目前,直接的气候观测记录最长不过两百年,限制了我们对长时间尺度气候演化的理解。古气候研究可以弥补观测记录较短的不足,并为气候模式提供结果验证和边界条件。末次冰消期(约19 ka BP ~ 11.5 ka BP),是地球气候演化中最后一次大冰期向暖期过渡的时间段,伴随着大气CO2浓度升高和海平面的快速上升。这与当前全球变暖背景下大气CO2升高和海平面上升的局面十分相似,因此末次冰消期气候演化机制的研究可帮助更好地理解地球气候由冷向暖的转变机制,并为应对当下的全球变暖提供借鉴。
末次冰消期气候演化研究中一个棘手的难题是破解大气和海洋两种气候系统之间的相互作用机制。前人研究往往采用多种指标分别重建大气或者海洋过程演化,但是由于涉及指标的多解性和不同定性指标之间难以互相比较的问题,不可避免的会影响结论的准确性。如果寻找到可同时反映两种不同的气候系统演化的单一指标,则有潜力减少噪音,并可直接对比两种气候系统的强弱演化。
基于这一思路,研究人员利用北印度洋的中层水深岩芯MD77-191钻孔,分析了其混合浮游有孔虫的Nd同位素记录,重建了一条跨越过去17000年的海水溶解态Nd同位素演化曲线,分辨率达到了前所未有的200年。现代海水的溶解态Nd同位素的分析表明,北印度洋地区由于受到南亚风化输入的影响,其溶解态的Nd同位素主要来自于风化输入与水团的混合。因此,该钕同位素记录的变化反映了印度夏季风(ISM)降水驱动的大陆风化输入和南半球来源的南极中层水团(AAIW)强弱的相对变化。为了确定风化输入的强度变化,这里我们总结了南亚大陆的石笋数据,并使用简单的统计方法,将不同时间的数据拼接在一起,用来作为风化输入的端元。而将有孔虫Nd同位素数据减去此风化端元,即可得到水团Nd同位素端元的变化。此水团的Nd同位素端元变化主要由于水团的强弱变化导致,而非其Nd同位素数值的变化。因此通过对该钕同位素记录的定量端元分解,我们可以在千年时间尺度上研究北半球季风系统(大气环流)和南半球来源的南极中层水团(海洋环流)的相互作用历史。结果发现,千年时间尺度的冷期,印度夏季风的减弱与南极中层水向北平流的增强相吻合,二者是反向变化;而在距今一万年到八千年之间的暖期,季风活动的增强伴随着持续的强大南极中层水流入,二者是同向变化的。为了验证以上的发现,我们进一步总结了全球范围内使用多种指标追踪的南极中层水演化记录,得出了相对一致的结论。
研究表明,在冷期向暖期过渡的末次冰消期时,印度夏季风与南极中层水团强弱演化在千年时间尺度上由反向转变为同向的变化可能响应了北大西洋冰川融水和南半球西风带的变化,并在最后一次冰消期的冷暖气候模态转换中起到了关键作用。这一结果也预示,在全球变暖的背景下,印度夏季风与南极中层水团可能会出现同时增强的结果。